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SUMMARY

This paper concerns a new Lagrangian Discontinuous Galerkin-type method to solve 2D �uid �ows
on unstructured meshes. By using a basis of Bernstein polynomials of degree m in each triangle, we
de�ne a di�usion process which ensures positivity and stability of the scheme. The discontinuities of
the physical variables at the interfaces between cells are solved with an acoustic Riemann solver. A
remeshing/remapping process is performed with a particle method: the remapping is locally conservative
and its accuracy can be adapted to the accuracy of the numerical method. Copyright ? 2004 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In this paper, a new Lagrangian Discontinuous Galerkin-type method in 2D is developed.
This method is devoted to multidimensional hydrodynamics problems on unstructured meshes
in Lagrangian coordinates. A non-classical formulation of the Euler equations in Lagrangian
coordinates is used. The main principles of the Discontinuous Galerkin method are adapted
to this Lagrangian formulation. If the movement is highly disturbed the method may require
a remeshing/remapping process. A particle method has been developed to remap the domain.
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This remapping is locally conservative and its accuracy can be adapted to the accuracy of the
numerical method.
The paper is organized as follow. Section 2 gives an overview of the Lagrangian system of

conservation laws. The hierarchical numerical method is presented in Section 3 of this paper.
Section 4 presents the locally conservative remeshing/remapping process made with a particle
method. An algorithm of the method is given in Section 5. Finally Section 6 presents several
numerical test cases in 1D and 2D.

2. 2D LAGRANGIAN SYSTEM OF CONSERVATION LAWS

Let (�; �)t be the 2D Lagrangian coordinates and (X ((�; �); t); Y ((�; �); t))t the Eulerian ones.
They are linked to each other by the transformation ((u; v)t is the �uid velocity)

X ((�; �); t=0)= �; Y ((�; �); t=0)= � (1)

@
@t
X = u;

@
@t
Y = v (2)

The Jacobian matrix describes the time evolution of these two systems of coordinates. The
Jacobian is the determinant of this matrix and can be associated with a local
compression=expansion rate. This Jacobian may not change sign during time evolution in
order to de�ne a bijection between Lagrangian and Eulerian coordinates

J=

(
@�X @�Y

@�X @�Y

) {
J ((�; �); t)= @�X@�Y − @�Y@�X
J ((�; �); 0)=1

(3)

The 2D Lagrangian system of conservation laws can be written as (see Reference [1])

@
@t
J −−→∇�:(u(−−→∇�Y )⊥ − v(−−→∇�X )⊥) = 0 (4)

@
@t
(�J ) = 0 (5)

@
@t
(�uJ ) +−→∇�:(p(−−→∇�Y )⊥) = 0 (6)

@
@t
(�vJ ) +−→∇�:(−p(−−→∇�X )⊥) = 0 (7)

@
@t
(�eJ ) +−→∇�:(pu(−−→∇�Y )⊥ − pv(−−→∇�X )⊥) = 0 (8)

p=(�− 1)�(e − 1
2 (u

2 + v2)) (9)
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We use the notation

(
−−→∇�A)⊥=

(−@�A
@�A

)
for all scalar A. Equation (9) can be replaced with any other equation of state. A more concise
notation of the previous system leads to a physical system of conservation laws

@
@t
(UJ ) +−→∇�:−→’⊥=0 (10)

U =(�; �u; �v; �e; 1)t (11)

−→F (U )=
(
F1

F2

)
=

((
0

0

)
;

(
p

0

)
;

(
0

p

)
; p

(
u

v

)
;−
(
u

v

))
(12)

−→’⊥=F1(
−−→∇�Y )⊥ − F2(−−→∇�X )⊥ (13)

and to a geometrical system of conservation laws

@
@t

−−→∇�X −−−→∇�u=0; @
@t

−−→∇�Y −−→∇�v=0 (14)

In References [2, 3] hyperbolicity studies of the above systems can be found. Both systems
are hyperbolic but their union (called complete system) is only weakly hyperbolic: even if all
the eigenvalues are real, there is no complete basis of eigenvectors. However, if the numerical
method does not have to determine a complete basis of eigenvectors then this system can be
considered to be hyperbolic.

3. THE HIERARCHICAL NUMERICAL SCHEMES—A LAGRANGIAN
DISCONTINUOUS GALERKIN APPROACH

Let �=
⋃NT
c=1 Tc, with Tc≡T being the triangle under consideration, be a non-structured mesh.

The nodes of T are locally labelled 1,2,3, the side h in front of the node number i (i=1; 2; 3)
is side number i and the normal unit output vector to h is called −→� h, the boundary of T is
@T and

◦
T =T=@T . Th is the neighbourhood triangle having h as a common side.

In every triangle T one can de�ne a Bernstein basis of polynomials of degree m: {�k}Bmk=1.
If �1; �2; �3 = 1 − �1 − �2 are the barycentric coordinates in T then the Bernstein basis of
polynomials are the monomials of the development

(�1 + �2 + �3)m ≡ 1 (15)

For example if m=1 the basis consists of 3 Bernstein polynomials

�1 = �1; �2 = �2; �3 = �3 (16)

For m=2 the basis is made up of 6 Bernstein polynomials

�1 = �21; �2 = 2�1�2; �3 = �22; �4 = 2�2�3; �5 = �23; �6 = 2�1�3 (17)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:645–663



648 R. LOUB�ERE, J. OVADIA AND R. ABGRALL

The number of Bernstein’s polynomials of degree m is equal to Bm (see Reference [3] for
details).
Every component of Equation (10) is multiplied with every �k to give the moment equa-

tions. ∫
�

(
@
@t
(UJ ) + {−→∇�:−→’⊥}

)
�k d� d�=0 (18)

These {•} mean that • has to be considered in the sense of a distribution. The Discontinuous
Galerkin principles imply that the functions are polynomials in each cell, such that on a
triangle T the divergence of −→’⊥ is split into two parts:

{−→∇�:−→’⊥}≡

−→∇�:−→’⊥ if

−→
� ∈ ◦

T

[−→’⊥|Th −−→’⊥|T ]:−→� h if
−→
� ∈ h

(19)

Equation (18) is equivalent to (Tc≡T )

M∑
c=1

{∫
T

@
@t
(UJ )�k d� d�+

∫
◦
T

−→∇�:−→’⊥�k d� d�

+
∑
h∈@T

∫
h
[−→’⊥|Th :−→� h −−→’⊥|T :−→� h]�k d�

}
=0 (20)

The discontinuity on h is split into two contributions by using the intermediate value
∗∫

h
−→’⊥�k d� ∫

h
[−→’⊥|Th −−→’⊥|T ]�k d�=

∫
h

−→’⊥|Th�k d� −
∗∫

h

−→’⊥�k d�


︸ ︷︷ ︸

contribution for Th

+

 ∗∫
h

−→’⊥�k d�−
∫
h

−→’⊥|T�k d�


︸ ︷︷ ︸
contribution for T

Whatever the intermediate value conservation will be respected. The same process is repeated
on each side h such that the moment equations are �nally given by∫

T

@
@t
(UJ )�k d� d�+

∫
◦
T

−→∇�:−→’⊥�k d� d�

+
∑
h∈@T

 ∗∫
h

−→’⊥:
−→� h�k d�−

∫
h

−→’⊥|T :−→� h�k d�
=0 (21)
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A Green formula for the second term yields

∫
T

@
@t
(UJ )�k d� d�−

∫
◦
T

−→’⊥:
−−→∇��k d� d�+

∑
h∈@T

∗∫
h

−→’⊥:
−→� h�k d� =0 (22)

If we de�ne MUJ; k :=
∫
T (UJ )�k d� d� to be the moment of UJ; M∇’; k :=

∫
◦
T

−→∇�:−→’⊥�k d� d� to
be the interior cell term,

∑
h∈@T

[ ∗
M’;k; h−M’;k; h

]
:=
∑
h∈@T

 ∗∫
h

−→’⊥:
−→� h�k d�−

∫
h

−→’⊥|T :−→� h�k d�


to be the border terms, then system (21) becomes

@
@t
MUJ; k +M∇’; k +

∑
h∈@T

[M ∗
’; k; h −M’;k; h]= 0 (23)

Let [tn; tn+1] ⊂ [0; T ] with T¿0 and �t= tn+1 − tn, then the time discretization is given as

@
@t
(MUJ; k)�

Mn+1
UJ; k −MUJ; k

�t
(24)

superscript n+1 is the variable at time t= tn+1 and the absence of a superscript implies that
the variable has to be taken at time t= tn. Equation (23) becomes

Mn+1
UJ; k =MUJ; k −�tM∇’; k −�t

∑
h∈@T

[M ∗
’; k; h −M’;k; h] (25)

Interior cell terms approximation: For all k=1; : : : ; Bm

M∇’; k =
∫

◦
T

−→∇�:−→’⊥�k d� d� with −→’⊥=F1(
−−→∇�Y )⊥ − F2(−−→∇�X )⊥ (26)

Suppose that −→’⊥ is a vector whose components are polynomials of degree m, then

−→’⊥(
−→
� )=

Bm∑
i=1

−→’⊥; i�i(
−→
� )⇒ M∇’; k =

Bm∑
i=1

−→’⊥; i :
∫

◦
T

−−→∇��i�k d� d� (27)

with −→’⊥; i the i-component in the Bernstein basis. To determine (27) we have to compute−→’⊥; i for all i. As moments of UJ are known at t= tn, we can de�ne

Û (
−→
� )=

Bm∑
i=1
Ûi�i(

−→
� ) with Ûi=

(
MUJ; i

MJ; i

)
(28)

then an approximation of −→F (U ) is given by

−→F (U )(−→� )�−→F (Û )(−→� )=
Bm∑
i=1

−→̂
Fi �i(

−→
� ) with

−→̂
Fi =

−→F (Ûi) (29)
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If we suppose that −−→∇�X and −−→∇�Y are polynomials then

−−→∇�X �
−−→̂
∇�X (−→� )=

Bm∑
i=1

−−→̂
∇�Xi�i(

−→
� ) (30)

−−→∇�Y �
−−→̂
∇�Y (−→� )=

Bm∑
i=1

−−→̂
∇�Yi�i(

−→
� ) (31)

A Pm approximation of −→’⊥ is then computed as an (m)-di�usive Bernstein polynomial

−→’⊥ �
Bm∑
i=1

−→̂
’⊥; i�i(�) with

−→̂
’⊥; i=

(
F̂1; i(

−−→̂
∇�Y )⊥; i − F̂2; i(

−−→̂
∇�X )⊥; i

)
(32)

Remark 1
The de�nition of an (m)-di�usive Bernstein polynomial of a function A∈L1(T ) is

∀(x; y)t ∈T Â(x; y)=
Bm∑
i=1

(∫
T A(�; �)�i(�; �) d� d�∫

T �i(�; �) d� d�

)
�i(x; y) (33)

In Reference [3] some properties of such polynomials are shown.¶ By using (m)-di�usive
polynomials numerical di�usion is added to the scheme and the stability is increased. More-
over, (m)-di�usive polynomials ensure that the Jacobian, density and pressure polynomials
remain positive if and only if all Bernstein components are positive.

Interior cell terms are computed as

M∇’; k �
Bm∑
j=1

−→̂
’⊥; j :

∫
◦
T

−−→∇��j�k d� d� (34)

Approximation of the border terms: The border terms are split into two parts

∑
h∈@T

[M ∗
’; k; h −M’;k; h]=

∑
h∈@T

 ∗∫
h

−→’⊥:
−→� h�k d�−

∫
h

−→’⊥|T :−→� h�k d�
 (35)

An approximation of −→’⊥ has already been given therefore∫
h

−→’⊥|T :−→� h�k d��
Bm∑
j=1

−→̂
’⊥; j :

−→� h
∫
h
�i�k d� (36)

The star term is the solution of the moment Riemann problem on the side h in the direction−→nh:−→nh is the outgoing normal vector to @K the image of @T in the transformation from
Lagrangian coordinates to Eulerian ones. The physical moments on both sides of h are given
by ∫

@K
U (S)�k(S) dS=

∫
@T
U�k

√
((−−→∇�Y )⊥:−→� @T )2 + (−(−−→∇�X )⊥:−→� @T )2 d� (37)

¶(i)
∫
T Â d� d�=

∫
T A d� d�, (ii) A¿0⇒ Â¿0, (iii) ‖Â− A‖p m→∞→ 0 for all 16p¡∞.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:645–663
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The approximation of (37) uses (m)-di�usive polynomials

ÛG(�) :=
Bm∑
i=1
ÛGi�i(�) ÛGi= Û i

√
((
−−→̂
∇�Y )⊥; i :−→� @T )2 + (−(

−−→̂
∇�X )⊥; i :−→� @T )2 (38)

(
−−→̂
∇�X )⊥; i and (

−−→̂
∇�Y )⊥; i

are given due to (30) and (31) (see (51) and (52)).
Moment Riemann problem: The physical states on both sides of h are given by

̂̂
UT
h; k :=

∑Bm
i=1 ÛGi

∫
h∈@T �i�k d�∑Bm

i=1Ĝi
∫
h∈@T �i�k d�

UG;G de�ned in T (39)

̂̂
UTh
h; k :=

∑Bm
i=1 ÛGi

∫
h∈@Th �i�k d�∑Bm

i=1ÛGi
∫
h∈@Th �i�k d�

UG;G de�ned in Th (40)

Using (39) and (40) two densities (�Th; k ; �
Th
h; k), two pressures (p

T
h; k ; p

Th
h; k), two sound velocities

(cTh; k ; c
Th
h; k) and two velocities (�

T
h; k ; �

Th
h; k) can be computed for each Bernstein basis �k on

the side h. The Riemann problem on these two states is solved with the following acoustic
Riemann solver:

∗
�h; k =

pThh; k − pTh; k + (�c�)Th; k + (�c�)Thh; k
(�c)Th; k + (�c)

Th
h; k

RP(
̂̂
UT
h; k ;
̂̂
UTh
h; k ;

−→n @K)↗

↘
∗
ph; k =pTh; k − (�c)Th; k(

∗
�h; k − �Th; k)

(41)

The increments of each variable are then de�ned as

U = �u : M ∗
’; k; h=

∗
ph; k

∫
h∈@T

−−→̂
∇�Y⊥:−→� h�k d� (42)

U = �v : M ∗
’; k; h=

∗
ph; k

∫
h∈@T

−
−−→̂
∇�X⊥:−→� h�k d� (43)

U = �e : M ∗
’; k; h=

∗
ph; k

∗
�h; k
∫
h∈@T

Ĝ�k d� (44)

U =1 : M ∗
’; k; h=

∗
�h; k
∫
h∈@T

Ĝ�k d� (45)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:645–663
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The explicit scheme can now be written as

Mn+1
UJ; k =MUJ; k −�t

Bm∑
j=1

−→̂
’⊥; j :

∫
◦
T

−−−→∇��j�k d� d�

−�t ∑
h∈@T

[
M ∗
’; k; h −

Bm∑
j=1

−→̂
’⊥; j :

−→� h
∫
h
�j�k d�

]
(46)

The explicit discretization of the geometrical system yields

Mn+1−−→∇�X; j
=M−−→∇�X; j +�t

∫
T

−−→̂
∇�u�j d� d� (47)

Mn+1−−→∇�Y; j
=M−−→∇�Y; j +�t

∫
T

−→̂
∇�v�j d� d� (48)

such that

Mn+1−−→∇�X; j
=M−−→∇�X; j +�t

Bm∑
k=1
ûk
∫
T

−−→∇��k�j d� d� (49)

Mn+1−−→∇�Y; j
=M−−→∇�Y; j +�t

Bm∑
k=1
v̂k
∫
T

−−→∇��k�j d� d� (50)

As

−−→̂
∇�Xj=

∫
T
−−→∇�X �j d� d�∫
T �j d� d�

=
M−−→∇�X; j∫
T �j d� d�

and
−−→̂
∇�Yj=

∫
T
−−→∇�Y�j d� d�∫
T �j d� d�

=
M−−→∇�Y; j∫
T �j d� d�

then the gradients of X and Y are given by

−−→̂
∇�X n+1j =

−−→̂
∇�Xj +�t

Bm∑
k=1
ûk

∫
T
−−→∇��k�j d� d�∫
T �j d� d�

(51)

−−→̂
∇�Y n+1j =

−−→̂
∇�Yj +�t

Bm∑
k=1
v̂k

∫
T
−−→∇��k�j d� d�∫
T �j d� d�

(52)

Step size: �t is limited by two conditions: a Lagrangian CFL-type condition and a Jacobian
condition. Because the Jacobian has to remain positive we enforce �t the value to be such
that Mn+1

J; k will remain positive for all k (as will be the polynomials Ĵ and �̂). A Runge–Kutta
(RK) method has been used to increase the value of �t.
Slope type limiting: The use of (m)-di�usive polynomials adds some numerical di�usion to
the method in such a way that the positivity (of Jacobian and density polynomials) is ensured

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:645–663
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and the scheme is stable without any slope type limiting for m62, aside from strong shock
waves. In the general case a slope-type limiter is added, its philosophy is: ‘if the compression
is maximum in T (with respect to its three neighbours), then all variables UJ are replaced
by their (m)-di�usive polynomial’.
Boundary conditions are simulated by prescribing the pressure

∗
ph; k or the normal velocity

∗
�h; k , on the side in contact with the external world.

4. REMAPPING=REMESHING PROCESS—A PARTICLE METHOD

Lagrangian methods are known to be accurate because the mesh is re�ned near the compres-
sion area and unre�ned near the expansion area. However, one of the drawbacks of Lagrangian
methods is the fact that for highly disturbed �ows, positivity of the Jacobian cannot be guar-
anteed. The previous numerical method ensures Jacobian positivity by reducing �t. But if �t
tends to 0 the solution is to remap=remesh the domain.
The remapping=remeshing process is a critical phase in a Lagrangian hydrodynamics code

because it can destroy all the e�orts made by the scheme to be conservative and accurate. The
point is to build a remapping process (i) locally conservative, (ii) with the same accuracy as
the scheme.
If f∈Pm(�), the accuracy of the remeshing=remapping process is measured as its capability

to give a polynomial approximation of f called f̃∈Pm(�) such that f̃=f after several
remapping phases.

4.1. Projection on particles

De�nition 1
A particle is a Dirac function 	−→�p(

−→
� ) located in

−→
�p carrying six weights

(!U )p=(!�;!�u;!�v;!�e;!)p; Up=
(!U )p
!p

A particle p belongs to T if
−→
�p ∈T . So we can de�ne discrete moments with respect to

the Bernstein basis.

De�nition 2
Discrete moments of degree (m) are the (Bm)-vectors (vector of size Bm)

(M!;:)≡


M!U;1

M!U;2

...

M!U;Bm

=


∑
p∈T !pUp�

(n)
1 (�p)∑

p∈T !pUp�
(n)
2 (�p)

...∑
p∈T !pUp�

(n)
Bm (�p)


Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:645–663
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Lemma 1
Let N¿Bm be distinct points in T called

−→
�p, p=1; : : : ; N . Let (MUJ;:) be the m moments

given by the numerical scheme. If the weights (!U )p (associated to the position
−→
� p) are

located on a polynomial of degree m, then a unique population of N particles exists such that
for all k=1; : : : ; Bm

M!U; k =MUJ; k (53)

Proof
See Reference [3].

Point (i) is now full�lled because Equation (53) implies that all the information carried
by the moments has been projected on particle weights; no hypothesis has been made on the
position of the particles. Then any polynomial of degree less than m is exactly integrated with
this method if the mesh does not change (for example to plot the results).

4.2. Projection from particles

In the case, if we want to remesh=remap the domain we have to de�ne a more accurate
numerical integration. Indeed if the N particles are located at the Gauss points

−→
�g with Gauss

weights wg then the numerical integration

MUJ; k :=
∫
T
(UJ )(

−→
� )�k(

−→
� ) d� d�=

N∑
g=1
wg(UJ )(

−→
�g)�k(

−→
�g) (54)

is exact if N¿Bm in T . The same idea as Gauss quadrature is used but we will not enforce
the particle positions.
Let us choose a new mesh. Let the current triangle in the new mesh be 
. Bernstein

polynomials have changed in the new cells but the positions of the particles and their weights
(UJ )(

−→
�p) have not changed. Suppose there are N particles in 
 (N can be di�erent from

N ). Then we have the lemma

Lemma 2
Let

−→
�g, g=1; : : : ;N be N distinct points in 
, then the quadrature problem

MUJ; k :=
∫


(UJ )(

−→
� )�k(

−→
� ) d� d� ≡

N∑
g=1

Wg(UJ )(
−→
�g)�k(

−→
�g) (55)

for all k=1; : : : ; Bm and for all polynomial (UJ )∈Pm(�) has a unique solution if

(i) N¿Bm+1; (ii) ∀g=1; 2; : : :N; Wg=W̃(
−→
�g) with W̃∈P2m(
)

Proof
See Reference [3].

If enough particles are in each triangle 
 then the numerical integration of any polynomial
of degree m is exact. Therefore the numerical di�usion due to the remapping process is very
low and the accuracy of the remapping can be adapted to the accuracy of the scheme.
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The moments in triangle 
 give an initialization on the new mesh for the numerical method

∀16k6Bm; MUJ; k :=
N∑
q=1

Wq(UJ )q�k(�q; �q) (56)

4.3. Eulerian particle position

The Lagrangian particle position (�p; �p)t ∈T is by de�nition �xed in time. The Eulerian
position (Xp; Yp)t changes with the velocity de�ned in T (recall ÛJ ∈Pm(T ))

ûn+1p =
�̂uJ n+1(�p; �p)

�̂J n+1(�p; �p)
(57)

v̂n+1p =
�̂vJ n+1(�p; �p)

�̂J n+1(�p; �p)
(58)

then ((�t)k it is the kth timestep value)

X n+1p = �p +
n+1∑
k=1
(�t)k ûkp (59)

Y n+1p = �p +
n+1∑
k=1
(�t)k v̂kp (60)

In this paper, we did not present the way to choose a new mesh (remeshing process). Actually
due to the remapping method, whatever the new mesh, if it respects the requirements of the
lemmas then the remapping will be valid and accurate.
Note that after several Lagrangian steps, the Lagrangian mesh is almost impossible to be

expressed in Eulerian coordinates: a node has as many velocities as neighbour cells, the veloc-
ity along an edge is a polynomial so that a straight line can turn into a curve (if m¿2). But
we do not need this expression. As all the computations, the remeshing=remapping method
is expressed in Lagrangian coordinates. Only the visualization of the results is performed in
Eulerian coordinates, thanks to the particle method.

5. ALGORITHM

Let us present a sketch of the algorithm.

Initial data:

Moments MUJ; j;
−−→̂
∇�Xj;

−−→̂
∇�Yj for all Bernstein polynomial �j at time tn

Lagrangian scheme
Interior cell terms (27):
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Use of (m)-di�usive polynomials Û ;
−−→̂
∇�X ;

−−→̂
∇�Y to get (27)

Border terms (32):
On edge h between triangles T and Th

(i) de�ne the moments along the current edge with (38)
(ii) use the moment Riemann problem (41) to split the discontinuity

into two contributions for T and Th
Time step �t:

Must ful�ll the Jacobian positivity (and eventually the pressure positivity)
and the CFL type condition.
Time Incrementation:

Explicit=Runge–Kutta time discretization to compute moments of
(i) physical variables Mn+1

UJ; j ,

(ii) geometrical variables
−−→̂
∇�X n+1j ;

−−→̂
∇�Y n+1j

End of the Lagrangian scheme

Limitation:
If a limitation criterium is true for a triangle,

Then all variables UJ are replaced by their (m)-di�usive polynomials.
Remeshing=Remapping:

If a remeshing=remapping criterium is true,
Then use the particle method.

6. NUMERICAL TESTS

The present method can be written for any m, with a di�erent time discretization (explicit,
RK, implicit), with or without slope type limiting on unstructured meshes and has been tested
in 1D and 2D on several classical test cases, see References [3, 4] for details of the test cases.
All the tests have been performed with m=2 and a 2-step Runge–Kutta time discretization.

No remeshing=remapping was necessary even if a strong compression has been observed (see
Reference [3] for the validation of the remeshing=remapping process).
For the 1D test cases, the initial states are given in Table I and a comparison with Eulerian

schemes has been added. These Eulerian schemes are labelled as follows: CFLF (composite
scheme), PPM (piecewise parabolic method of Woodward and Collela), WENO5 (weighted
non-oscillatory 5th-order scheme), CWENO3 (3rd-order conservative weighted non-oscillatory
scheme). More Eulerian results can be found in the review article [4] of R. Liska and B.
Wendro�. For the 1D test cases the results are the average value in the middle of the cell.
The �rst test case called 123 problem has been chosen to test the behaviour of the method
on simple rarefaction waves, the Sod shock tube to see if the method is able to handle a
shock wave and a contact discontinuity, the blastwave to test the method in the presence of
interacting shock waves and contact discontinuities.

123 problem in 1D: Two strong rarefaction waves are initiated in the middle of the domain
[0,1] and they are moving towards the boundaries. The resulting middle state is close to
vacuum for density and pressure. The di�culty of this test is to reproduce the right internal
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Table I. Initial data of the 123 problem, the blastwave prob-
lem, the Sod tube problem.

123 Left Right

� 1 1
u −2 2
p 0.4 0.4

Blast Left Mid. Right

� 1 1 1
u 0 0 0
p 1000 0.01 100

Sod Left Right

� 1 0.125
u 0 0
p 1 0.1

Figure 1. 123 problem—Internal energy given by the 1D method for m=2 with 100 cells
(left) and 250 cells (right) vs. exact solution.

energy which is not close to zero. The initial density is equal to 1, the initial pressure is 0.4
and the velocity is uL =−2, uR =2 with the discontinuity located at x=0:5, �=1:4.
The internal energy for 100 and 250 cells is presented in Figure 1 for the present method

at time t=0:15 with the exact solution in a straight line. In Figure 2 the results obtained with
the classical Eulerian schemes for 100 cells are presented. It seems that most of the Eulerian
schemes are not able to compute the internal energy very well (see Reference [4]). With the
present method the internal energy is better resolved especially with 250 cells.
Sod shock tube in 1D: This classical Riemann problem generates simple waves (rarefaction,
contact and shock) separated by constant states. Two initial gases (�L =1:0, uL =0:0, pL =1:0
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Figure 2. 123 problem—Internal energy given by Eulerian methods with 100 cells vs. exact solution.

and �R =0:125, uR =0:0, pR =0:1 and �=1:4) are splitting the domain [0,1] into two equal
parts. The rarefaction wave is moving to the left whereas the contact and the shock wave are
moving with a positive velocity.
The density and pressure are presented in Figure 3 for the present method (200 cells) with

the exact solution in a straight line at time t=0:153. Even if the limiter is neither a classical
slope-type limiter used in Eulerian methods, nor a classical arti�cial viscosity term used in
Lagrangian methods, it seems that this limiter is enough to stabilize the scheme. Moreover,
the undershoot at the contact discontinuity seems to be a classical behaviour of most of the
Lagrangian schemes.
Blastwave in 1D: This classical test case has been proposed by Collela and Woodward

to compute the interaction of waves from two Riemann problems with re�ecting boundary
conditions. The interval is x∈ [0; 1], the initial discontinuities are located at x1 = 0:1 and
x2 = 0:9. The initial density is 1 everywhere, the gas has a zero velocity and �=1:4. Two
pressure discontinuities (pl = 1000, pm =0:01, pr = 100) are generating complex interactions
between shock waves, rarefaction waves and contact discontinuities. The �nal time of the
simulation is t=0:038.
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Figure 3. Sod tube—Density and pressure given by the 1D method for m=2 with 200 cells.

Figure 4. Blastwave—Density and velocity given by the 1D method for m=2 with 400 cells. The line
joins the average values between two adjacent cells.

In Figure 4 density and velocity are presented for the present method (400 cells). In Figure 5
the density given by the Eulerian schemes for 400 cells is shown. The solution in a straight
line is a converged solution given by the PPM scheme for 2000 cells.
Even if an overshoot can be observed for the present method, the results are very close to

the converged solution. Shock waves and contact discontinuities are well solved.
For the 2D test case the results are presented with the particle method, the moments are

projected on particles and then the particle population is drawn (a circle is drawn at the
particle location and the colour represents the variable value). No interpolation has been
made between the particle values to avoid visualization problems.
Isentropic compression of a ring in 2D planar geometry: The Sti�ened Gaz equation of

state pSG =p − ��∞ (p is the pressure from the perfect EOS, �=3:5, �∞=350× 109) is
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Figure 5. Blastwave—Density given by Eulerian methods with 400 cells. The straight line is the con-
verged solution (2000 cells) given by the PPM method.

used. The initial density is �=7:82, the initial pressure is pSG =0, the velocity is centripetal
and ‖−→V ‖=2× 105. The radii of the ring are R+ =10 and R−=9:5, see Figure 6.
As vacuum is all around (pext = 0) there is no jump in pressure. Then the ring is moving

towards its centre and at the same time is becoming thicker. Both phenomena should compen-
sate each other and the average density of the ring should remain close to 7.82. Afterwards
the compression will be much higher and the average density will increase until the ring
closes on itself.
An unstructured mesh (51 points on circumferences of 11 concentrical circles, 2040 cells,

1071 mesh points) is used. The density on particles is presented for two times (T1 = 1:43×
10−6 and T2 = 38:8× 10−6) in Figure 7. The �rst di�culty of this test case is to retain the
cylindricity of the problem, which seems to be achieved by this method for an unstructured
mesh.
In Figure 8, the average density on the ring is shown for the present method and the 1D

cylindrical Godunov scheme with 100 cells. Numerical oscillations for the two schemes are
due to the fact that acoustic waves are generated due to the boundary conditions at the very
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X
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R+
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pressure=0

Centripetal initial velocity

density=7.82

Figure 6. Isentropic compression of a ring—the ring is considered as a cut of an in�nite cylinder
(left) with a 2D cartesian geometry—sketch of the problem (right): the initial density is 7.82, the
initial velocity is centripetal and ‖−→V ‖=2× 105, the pressure is zero inside and around the ring (the
sti�ened-gaz equation of state is used: pSG =p − ��∞ with p the pressure from the perfect EOS,

�=3:5, �∞=350× 109, the radii of the ring are R+ =10 and R−=9:5.

Figure 7. Isentropic compression of a ring—density on particles given by the 2D method
for m=2 at T1 = 1:43× 10−6 and T2 = 38:8× 10−6.

beginning of the computation. The second di�culty is to catch the right behaviour of the
phenomenon, a �rst phase with a constant ring density, and a second phase where the ring
density is increasing. The time of the transition between these phases seems to be well solved
with this method even if the mesh is unstructured.
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Figure 8. Isentropic compression of a ring—time evolution of the average density on the ring (present
method and 1D cylindrical Godunov scheme with 100 cells).

7. CONCLUSION

In this paper, a new Lagrangian Discontinuous Galerkin-type method on unstructured meshes
has been presented. A non-classical Lagrangian formulation of the Euler equations is solved.
Using Bernstein polynomials we are able to de�ne (m)-di�usive polynomials which add some
numerical di�usion to the scheme during the computation of the increment terms. We show
that this numerical di�usion is su�cient to ensure the conservation of the positivity. An acous-
tic Riemann solver is used to treat the discontinuity at the interfaces and a Runge–Kutta (or
implicit) method is used for time discretization. Such a method de�nes a hierarchical class of
numerical schemes depending on the degree of the Bernstein basis. The remeshing=remapping
phase is treated with a particle method: this process is locally conservative and its accuracy
can be adapted to the accuracy of the scheme. In 1D and 2D, some test cases show the
e�ciency of this method to treat shock waves, contact discontinuities, expansion waves or
cylindrical phenomena without the need for remeshing=remapping. In particular the isentropic
compressions can be treated with such a method on unstructured meshes without breaking the
symmetry of the problem.
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